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Electric Screen Jauman Absorber Design Algorithms

Leendert Johannes du Toit, Member, IEEE, and Johannes Hendrik Cloete, Member, IEEE

Abstract—The electric screen Jauman absorber [1] is a strati-
fied cascade of dielectric spacers, interlaced with resistive sheets,
which is effective in reducing specular reflection from flat or
moderately curved conducting surfaces. A literature survey of the
period up to 1993 may be found in [2], while the topic has also
received more recent attention, e.g., [31-[9]. Usually, the dielectric
constant of the identical spacers is assumed known a priori, and
the design problem is to find the sheet surface resistivities that
will yield an absorption behavior which meets certain design cri-
teria. This paper presents detail on three efficient and dedicated
synthesis algorithms that synthesize absorbers with Butterworth,
Equiripple, and Chebyshev absorption properties and should be
seen as complementary to the introductory discussion in [2].
To the authors’ knowledge, the Chebyshev solutions solve the
fundamental problem for the first time.

1. INTRODUCTION

ORROWING FROM the development in {2], the de-

sign problem may be related to the network shown in
Fig. 1, normalized to the intrinsic impedance of free-space
and to a center frequency of 1/4 Hz. The resistive sheets are
represented by lumped shunt conductances, 0 < G, <, 00t =
1---N, related to the sheets by G; = ny/Rs, = 1/R,,
with g = /po/€0, and R, , being the various unknown and
frequency-independent sheet surface resistivities in {2/square.
The identical dielectric spacers are represented by transmission
lines, each with a delay time of 7' = 1 s, and a charac-
teristic impedance 0< Z, <1, with Z. = 1/,/€,, and with
1< €. < 0o being the relative dielectric constant of the spacers
(which will be assumed known). The impedance normalization
suggests that the network be embedded in a 1-Q system, while
the commensurate transmission lines make it convenient to
utilize Richard’s complex frequency surrogate S = X + j1 =
tanh(s) = tanh(o + jw) to express the input properties [10].
For numerical calculations, a real valued frequency surrogate
f = 200w/n will be defined that automatically normalizes
the absorber center frequency to f = 100. Bandwidth (B)
will be expressed in terms of these f-domain units throughout
this paper and will therefore be in percentage units. Note that
f should not be confused with the more conventional f =
w/(2m). Finally, only normal incidence will be considered,
and to retain as much as possible of the underlying order in
the pertinent analysis equations, the assumption will be made
that a radome, typically with a different thickness and «,, is
absent.
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II. ANALYSIS EQUATIONS

It has been shown [2], [11] that the input impedance and
reflection coefficient of the network in Fig. 1 can be expressed
as

_ Z.SPx
A e ®
ZS5+1)Py — P
o(8) = )Py = Pr 2)

(Z.S — 1)Py + Py

with Py and Py the last two polynomials in the recursive
set

P11 =(Z2.G;S+2)P, + (52 = 1)P;y (3)

with initial conditions Py = 0, P = 1, and with¢ =1--- N,
These equations are sufficient to expand Z,;, and p in terms of
7. and G ..y in general, although the number of terms and
symbolic complexity both grow dramatically with increasing
N. To circumvent this complexity during numerical synthesis,
while retaining S as an independent variable, the coefficients
of S in P; may be derived recursively. Define

1—1
P(S)= > p{sm™, for i=1---N+1 (4
m=0

where the superscript (7) does not denote any mathematical
operation, but is simply used as convenient notation. To be
mathematically complete, define p$,? = 0 for m <0 and for
m > 4, which automatically includes the one initial condition,
Py, = 0. The second condition, P; = 1, and the recursive
equation (3) for P,, may now be implemented by defining the
initial state as pf:L::O_2Nj(,1) = 0, by setting pél) = 1, and finally
by constructing a triangular set of coefficients by computing,
foreach ¢ =2---N + 1

) = Z.Gapl + 20570 +p87Y - pl,
where m=0..-7—1. 5
Note that this paper will present the reflection behavior (i.e.,

absorber performance) as the reflection coefficient magnitude
expressed in dB, .4 = 20log, |p|, as a function of f.

III. REALIZING REFLECTION ZEROS

A. General Algorithm

It follows from (1)~(3) and the definition of S that the
reflection zeros will be completely defined by the numerator
of p alone. In fact, it is partially proved and hence postulated
in [11] that such a given numerator is an overdetermined spec-
ification, with N! conductance solutions in general. Luckily,
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Fig. 1. The Jauman network model.

the two specific absorption behaviors that will be synthesized
by controlling these zeros were found to be well-behaved and
exhibited none, or only one, unique physical solution. (The
uniqueness is a postulate.)

Let us now concentrate on realizing a given set of reflection
zeros. First denote the numerator of p by N, and express it as

N
Ny(8) = -1+ a;S* (6)
=1

with the a, given by

a, = Zop{™] +p™) — p{NHY )
for ¢ = 1--- N and remembering p%v) = 0. For conciseness,

introduce the matrix notation @ = [ay - -aN]T and G =
[G1 -+ Gn]T, where the superscript T indicates the transpose
and where we have a computable from G through use of
(5) and (7). This functional dependence of @ on G may be
approximated by assuming the linear relationship

a~a+D(G-G) ®)

around the workpoint G. Notationwise we have a due to G;@
due to G:;G assumed to be in the vicinity of G;a,@,G,G
column vectors; and D the (fortunately) square Jacobian
matrix

— . da;
D= [d,j], Wlth dij = 6_6‘7 el )]
with 4,7 = 1---N, and with all quantities real. It was

found that finite difference approximations for the d,, were
not sufficiently accurate, or too slow, and that the more
computationally efficient method given in the appendix, was
needed. To complete the algorithm, rewrite the given N,(S),
which have to be realized as —1 + X, 4,5¢, enforce a =
a = [a1,---,an]7 in (8) and denote intermediate solutions
with superscripts to obtain the simple recursive improvement
scheme

GU+D — g 4 (—D—(z))—l(& ~a®). (10)
Given the reflection zero requirements &, an initial guess G,
and assuming stable convergence for the time being, (10) is
simply applied until convergence, i.e., when the maximum
difference between the elements of @ and a is sufficiently
small (e.g. <1079). ’
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TABLE 1
INTERMEDIATE RESULTS WHEN SYNTHESIZING
THE N = 3,¢, = 1, BUTTERWORTH SOLUTION
[Gl’ GZ, G3] l [al’ asz, a3] J

1.00000, 0.50000,0.33333
1.72581,0.57258,0.04301
1.64346,0.51901,0.10618
1.64404,0.51427,0.10914]
1.64404,0.51426,0.10915

0.0000, —1.5000, 0.0000
—0.0000,0.4109,0.1768
—0.0000,0.0128,0.0128
—0.0000, 0.0000, 0.0000
—0.0000, 0.0000, 0.0000)

B. Butterworth Synthesis

A Butterworth response may be obtained by realizing all
N reflection zeros at S — oo, thereby yielding a maximally
flat behavior around the center frequency where the reflection
coefficient magnitude and its first V — 1 derivatives with fre-
quency, vanish. It has been shown [11] that this is equivalent
to the specification N, = —1, i.e., @ = 0. Next, it is postulated
that for €, < €p max(IV), which is tabulated in [2], only one
realizable solution for G exists and that it can be found by
using Ggl) = 1/3 in (10).

As an illustration of the algorithm, consider the simple
Butterworth synthesis, N = 3 and ¢, = 1, of which the first
five iterations are given in Table 1. Also, to complement the
discussion in [2], several practical solutions are given later, and
to illustrate the severe spread in sheet resistivities mentioned
in [2] it will be sufficient to state that we have, from the
N = 20,¢, = 1 solution, that R; ~ 0.5 and Ry > 5 x 10°,
with Rj...oq0 monotonic.

C. Equiripple Synthesis

If the reflection zeros are realized on the imaginary S-
axis, at distinct and judiciously chosen (real) frequencies,
rippled behaviors may be obtained with the maxima all at
a specified level, Rqp expressed in dB. In Fig. 2 two such
solutions for small N are depicted, and it is seen that in
general, M = floor(N/2) unique zeros might exist in the
range 0 < f < 100, not counting the necessary zero at f = 100
for N odd. The notation floor(z) denotes the largest integer
<. Next, we number these zero positions with decreasing f,
call them zj..ps, and denote the spacings in between the z;
the lobe-widths wy...ps. The following relationships exist:

wy
Neven: z, =4 100=— i=1 (11)
Zimi—w, t=2---M, and
o _f100—w i=
N odd: z’_{zi_1—wi i=2...M. (12)
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Fig. 2. Typical reflection behavior of Equiripple solutions. The dotted trace
is for N = 4 and the solid trace for N = 5.

Next, associate a reflection maximum expressed in dB with
each lobe, and denote them m;...;7. As before, introduce
the matrices w = [wy, -, wpm]T,z = [21,-+,2m]%, and
m = [my,- -+, mp|T. The algorithm now entails the repetitive
execution of the following steps:

Step 1: TInitially, and only during the first iteration, define
the (almost) equispaced lobe-widths

150
wy = N105 for M=1, and
w 200 150
M—1= Wy = —————
LML N0 M T N+05
for M>1. (13)

Step 2: This will be the entry point during iteration. From
the current lobe-widths w, find the zero positions with (11) or
(12) and then construct

—ﬁ{'th;/EEo_)H}'

=1

N,(8) = (14)
Note that NV, will of necessity always be an even polynomial
in S, ie., that ag;_1 = 0 for 4 = 1---floor((V +1)/2), and
that it will be of degree 2M.

Step 3: To realize the constructed N,, simply apply the
iterative algorithm given by (10), taking the current solution
for G, computed in Step 3 of the previous iteration, as GW.
Should this be the first iteration, i.e., the realization of the zeros
given by the initial lobe-widths (13), use Ggl) = 1/i,i =
1---N. :

Step 4: With G known, m should now be computed. As
will be made clear later on, the computation of m will
also be needed in an inner loop, where partial derivatives
will be approximated by finite differences. This necessitates
the accurate computation of m, which was implemented by
evaliating |p| at the zeros of its derivative with frequency.
This derivative may be constructed in closed form, and its
zeros may be found using a simple iterative procedure that
starts at the midpoint of each lobe.

With m known, a test for convergence should take place
that may be defined simply as when the maximum difference
between any element of m and Rq4p is sufficiently small (e.g.,
<10™%). Should this be the case, the synthesis is done and the

frequency bandwidth may subsequently be computed. If not, .

the iteration proceeds to Step 5.
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Step 5: This is the heart of the algorithm, where an un-
satisfactory ripple behavior will be improved by judiciously
perturbing the lobe-widths. This operation leans heavily on
the fact that a reflection maximum in between two zeros (ex-
pressed in dB) is more or less proportional to its corresponding
lobe-width (expressed in f-domain units). With this in mind,
each maximum is now approximated by a linear combination
of all the lobe-widths, i.e.,

m~m+ E(w—w). (15)

Notationwise, we have m due to w; Tz due to @ (the current

maxima and lobe-widths); the new lobe-widths in w assumed

to be in the vicinity of W; m, m, w, and W column vectors; and
E the (again, fortunately) square Jacobian matrix

E = [eij] with €ij = -aﬁl-

Owj gy

(16)

with 4,7 = 1-.-M. The partial derivatives in E may be
approximated by finite differences, in particular by perturbing
the lobe widths one by one, each time retracing the complete
cycle from Step 2 up to the recomputation of m and by
observing the resulting changes in m. Note that these perturbed
intermediate quantities should only be used to build up E, and
that they should be discarded afterwards. It was found that
width perturbations of 0.001 f-domain units are sufficiently
small for all reasonable R4p, and N up to at least 20. Note
also from (11) and (12) that a width-perturbation in lobe 7
will cause shifts in all the remaining zero positions, namely

%, = j--- M, with small corresponding shifts in the positions

of the corresponding maxima.
Solving (15) for w by enforcing my...ps = Rgp results in
the following width-improvement matrix equation:

amn
(18)

which is not recursive. The meaning of Rgp — m is that
each element of the vector 7 should be subtracted from the
scalar Rqp, thereby again resulting in a vector. It is also
important to note the damping constant 0 < 8 < 1, which was
implemented to subdue instabilities in the first few iterations
of certain synthesis runs. Specifically, these occurred due to
the rough assumption of linearity in (15), which induced large
(and sometimes unrealizable) lobe-width improvements. These
in turn translated to big changes in the coefficients of N, (S),
which could not be realized with (10).

This unstable behavior was controlled by restricting the
maximum lobe-width change to be 25/(N + 2)-domain units.
Particularly, 3 is derived from the proposed lobe-width im-
provements Aw given by (18), as

25
.9
N+2)r_nax{|Aw1I,--*,|Ale}) 4

w =%+ f(Aw), with
Aw = (E) ' (Rap — ™)

£ = min (1, (

Note that final convergence is unaffected, as we then have
8 = 1. With (17) and (19) an improved set of lobe-widths
may now. be computed. These new widths should then be used
in the next iteration, by injecting them into Step 2.
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Fig. 3. Reflection behavior for the N = 3,¢, = 1,Rgp = —15dB

Equiripple parent solution (dotted), and the Chebyshev solution optimized
over the same (fc = 31.4519) parent bandwidth (solid).

The first few iterations in the N = 3,¢, = 1 and Ryp =
—15 dB Equiripple synthesis are shown in Table II and clearly
illustrate the algorithm. As another example, the N = 20, ¢, =
1 and Rqg = —20dB solution has 3 < R;...29 < 30, which
is seen to be much less of a spread than the corresponding
Butterworth solution (see the comments in [2]). As in the
Butterworth case, it is postulated that for €, < ¢, max (N, Rab),
which is tabulated in [2], only one realizable solution for G
exists, and that it can be found by using the algorithm as
presented here. Lastly, a few solutions of practical interest are

tabulated later.

IV. OPTIMAL CHEBYSHEV SYNTHESIS

Experience gained during the development of the Equiripple
synthesis algorithm indicated that such solutions are very close
to local optimality. Numerical investigations, however, found
small improvements in either the ripple level or the frequency
bandwidth, and sometimes both. These potential improvements
are negligible for practical purposes, but the nonoptimality of
the Equiripple solutions was quite unexpected and felt to be
important from a scientifically fundamental point of view.

The synthesis algorithm that was developed to find these
optimal solutions will invoke Chebyshev’s fundamental theo-
rem and will thus be named in honor of him. The procedure
is to assume a successful Equiripple synthesis, and then to
reduce the reflection maxima (over the parent Equiripple
solution’s bandwidth) as much as possible. The algorithm
will operate directly on the conductances, and its objectives
will be the simultaneous reduction and ultimate vanishing
of M = floor{NN/2) errors representing the differences be-
tween the maxima, and N errors indicative of the deviation
from an optimal situation. Together, vanishing of these er-
rors corresponds to a locally optimal situation, which will
be heuristically conjectured to be global. All the pertinent
numerical techniques that will be used have already been
introduced, and the algorithm will thus be presented in a
concise format.

As may be expected, the general structure of the rippled
reflection coefficient magnitude does not change much when

- an Equiripple solution is optimized. This is shown in Fig. 3.
Therefore, the same numbering scheme described earlier will
be employed for the maxima, i.e., mi...;s. As before, only
the respective values in dB will be of interest, and not
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TABLE II
INTERMEDIATE RESULTS WHEN SYNTHESIZING THE
N = 3,¢r = 1,Rgs = ~15dB EQUIRIPPLE SOLUTION

[ Equation | Results ]
I (13) I Initialize : w; = 42% ]

(12) 21 =573

(14) Np = —0.63608% ~ 1, i.e. & = [0,—0.6360,0]%
(10),i=1 G1 = 1.0000, G, = 0.50000, G3 = 0.33333
(10),: =2 G1 = 1.4181, G, = 0.54181, G3 = 0.16610
(10),: =3 G1 ='1.3896, G = 0.51837, G3 = 0.19121
(10),i=4 Gy = 1.3897, G2 = 0.51759, G3 = 0.19170

See text Convergence reached.
See Step 4 my = —26.623 dB

(16) e1,1 = 0.792

(18) Aw; = 14.68

(19) 8 =0.341

(17) We have w; = 42%, therefore wy = 47%.

(12) 2 = 527 .

(14) Np = —0.873957 ~ 1, i.e. 4= [0,—-0.8739,0]7
(10),i=1 | Gi =1.3897, G, = 0.51759, G3 = 0.19170
(10),i=2 G1 = 1.2898, G4 = 0.51733, Ga = 0.22528
(10), 1 =3 G1 = 1.2878, G, = 0.51626, G3 = 0.22650

See text Convergence reached.
See Step 4 my = —22.719dB

(16) e11 =0.775

(18) Awy = 9.963

(19) B = 0.502

(17) We have w; = 47%, therefore wy; = 52%.

(12) 2 = 47% .

(14) Np = ~1.19695% -~ 1,i.e. 4= [0,~1.1969,0]7
(10),i=1 G = 1.2878, G = 0.51626, G3 = 0.22650
(10),i=2 G = 1.1468, G, = 0.51335, G3 = 0.27556
(10),i =3 | Gy =1.1430, G, = 0.51099, G5 = 0.27840

See text Convergence reached.
See Step 4 my = —18.819 dB

(16) e1,1 = 0.792

(18) Awy = 4.820

(19) g=1

(17) We have 1w = 52—?—, therefore wy = 57.677.

[ Iteration 4 : m; = ~14.851 dB. ]
[ Iteration 5 : my = —14.999 dB. |

Iteration 6 = Final solution :
G = 0.94645, G = 0.49410, G3 = 0.35512, B = 137.096%.

the frequency points where they occur. To complete the
formulation, one additional maximum is of interest, namely
mar+1 = 20logy, |p|, evaluated at the frequency point which
defines the bandwidth of the parent Equiripple solution, f..
Except for the fact that |p| will always be evaluated at
fe, magy1 will be treated in exactly the same way as the other
maxima.

Step 1: Assuming known conductances, the M +1 maxima
may be computed as before (sece Step 4 of the Equiripple
algorithm). With these maxima known, M errors of the first
kind will now be defined as

(€1, Em)T = mpggr = [ma, -, mug]” (20
with eéach element of the vector being subtracted from the
scalar mps41. Since the optimization initiates with an Equirip-
ple solution, it follows that these etrors will start out being
zero. During optimization - the maxima will differ slightly,
however, and they will only equalize again upon convergence.

Step 2: The next step is to define errors of the second kind,
which will be indicative of the nonoptimality of the current
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TABLE III
INTERMEDIATE RESULTS WHEN OPTIMIZING THE
N =3,¢, = 1,Rgg = —15 dB EQUIRIPPLE PARENT
SOLUTION- TOWARDS THE OPTIMAL CHEBYSHEV SOLUTION

{ Equation | Results !
—-9.7046 —6.7886  15.2929
(22) Q= [ 1.9935 ~1.8947 —-18.2545 ]
(29) £, = —5.4158, £3 = —7.0777, £, = —6.5785
See Step4 | G =[ 1.12254 0.508687 0.433493 ]T
(20) € = —0.2985
—7.2461 —6.4480 16.8322
(22) Q= [ 3.5083  3.7961 = —10.3095 ]
(29) &y = —0.7815, £5 = ~0.0212, €, = —~0.3446
T
See Step 4 G= [ 1.19434 0.489375 0.443681 ]
(20) €1 = —0.0358
—6.4652 —7.2319 17.6069
(22) Q= [ 3.5384  3.9051 —9.7378 ]
(29) £ = —0.0224, £5 = ~0.0780, £ = ~0.0403
See Step4 | G = [ 1.19576 0.490890 0.443508JT
(20) ' £, = 0.00002
—-6.4695 ~7.2087 17.6660
(22) Q= [ 3.5394  3.9437 —9.6656 ]
(29) £, = —0.0002, £3 = —0.0004, £, = —0.0002
‘See Step 4 | G = [ 1.19577 - 0.490892 0.443512JT
-10
A
-15
dB
-20
0
Normalized frequency, f
Fig. 4. Reflection behavior for the N = 3,¢, = 1,Rygp = —15dB

Equiripple parent solution (dotted) and the Chebyshev solution optimized
over the same (fc = 31.4519) parent bandwidth (solid). Note the exploded
ordinate scale.

solution. Optimality in the present context simply implies that
the M + 1 maxima under investigation must be at a state
where they cannot all reduce simultaneously. To formalize this
criterion, set up the following matrix equation:

QA =[Ay,Ag, -, Aprqq]T,  with 1)
e
Q =g}, where g¢; = 5@?’ and
i=1---M+1, j=1---N (22)

with the A; arbitrary nonzero real numbers with the same
sign, with A = [A1---An]T to be solved for, and with
the ¢;; approximated by finite differences. Because the g;;
will be nested in an outer loop (se¢e Step 4), which will
also approximate differentiation with respect to conductances
by finite differences, these perturbations have to be chosen
carefully, and it was found that conductance perturbations of
10750 were sufficiently small.
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Fig. 5. Generic reflection behavior for the tabulated Butterworth solutions.
Note the monotonic decrease from f = 0 to f = 100.
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Fig. 6. Generic reflection behavior of the tabulated —20-dB Equiripple
solutions. Note the IV reflection zeros in the range 0 < f < 200.

Optimality will have been reached when (21) has no so-
lution [12], which explains the no-solution terminology often
associated with this approach, and which is an expression of
Chebyshev’s fundamental theorem. It follows that (21) will
have no possible solution for A when the M + 1 rows of Q
exhibit linear dependence, i.e., when «ay...3741, not all zero,
exist such that

MA+1

> 0ugij =0, for j=1---N (23)

i=1
with the signs of all the nonzero «; the same and with all «;
real. It should be noted that the requirement on the signs of o
was pointed out by Navot [13]. Although this sign requirement
can not be enforced in the algorithm, it can be checked for and
indeed was satisfied by all the examples worked out during the
course of [11] and [2] and during the preparation of this paper.

Step 3: Now, since (23) will by necessity not be possible
during optimization, NV optimality errors may now be extracted
from it. Stated loosely, these errors will be indicative of the
“deviation from linear dependence in the rows of @.” Without

loss of generality, define apsy; = —1, keep in mind that all
quantities are real, and restate (23) as follows:
M
> ouigij =quy1; for j=1---N. @4
i=1

Before proceeding, it will be convenient to segregate @ into
R= [’r‘ij] with 7ri; = g5, and:

i=1---N, j=1---M 25)
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Fig. 7. Generic reflection behavior of the tabulated —20 dB- Chebyshev
solutions. Note the IV reflection minima in the range 0 < f < 200.

TABLE IV
NORMALIZED RESISTANCE (R;) VALUES FOR BUTTERWORTH
REFLECTION BEHAVIORS, WITH THE CORRESPONDING

BANDWIDTHS COMPUTED AT THE A = —20dB LEVEL
[N 1 cp =1 I cp = 1.03 i er = 1.1 ]
X Ry = 1.00000. R, = 1.00000 Ry = 1.00000
B = 25.26% B = 24.90% B =24.11%
By = 0.707107 Hy = 0.696733 R; = 0.674200
2 Ry = 3.41421 Ry = 3.54152 Ry = 3.87027
B = 67.32% B = 66.79% B .= 65.65%
Ry = 0.608257 Ry = 0.599334 Ry = 0.579950
Ry = 1.94454 Ry = 1.91601 Ry = 1.85404
3 Rz = 9.16207 Rz = 10.4295 Rz = 15.2290
B = 92.64% B =92.13% B =91.01%
Ry = 0.561038 Ry = 0.552807
Ry = 1.49364 Ry = 1.47173
4 R3 = 4.27818 Rz = 4.21541
Ry = 22,5545 Ry = 33.2137 SOLUTION
B = 108.92% B = 108.45%
Ry = 0.535357 Ry = 0.527503
Ry = 1.28591 Ry = 1.26705
R3 = 2.91767 Ry = 2.87487 NO
5 R4 = 8.79951 Ry = 8.67041 SOLUTION
Rg = 53.1999 Ry, = 238.792
B =120.31% B =119.88%
Ry = 0.520602
Ry =1.17288
R3 = 2.32379
s Ri = 5.32786 No ?}O N
Rg = 17.6607 SOLUTION SOLUTIO
Rg = 122.301
B = 128.78%
“H) = 0.511953
Ry = 1.10625
Ry = 2.00829
. Ry = 3.90673 NO
Rs = 9.52448 SOLUTION SOLUTION
Rg = 35.1300
Ry = 276.238
B = 135.36%
Ry = 0.506871
Ry = 1.06546
R3 = 1.82256
= 3.18060
8 gé = slatom2 SOLUTION SOLUTION
Rg = 16.9650
Rp = 69.6897
Rg = 615.734
B = 140.66%
and into

t=[qma1,1,0M4125 7y qM+1,N] - (26)

This segregation, together with @ = [ay - - - apr]T, transforms
(24) into
Ra=t. 27

It readily follows that (27) represents N linear equations in
M unknowns, with N > M, that it will be overdetermined
and also inconsistent in general. One way to find the “best”
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TABLE V
NORMALIZED RESISTANCE (R;) VALUES FOR
Rgp = —20dB EQUIRIPPLE REFLECTION BEHAVIORS
[N ] €r = 1 T €r = 1.03 ) €r = 1.1 ]
T R; = 0.826894 Ry = 0.812610 Ry = 0.782734
2 Ry = 2.52955 Ry =2.59791 Ry = 2.76845
B = 86.40% B = 85.88% B =84.74%
Rj = 0.838716 Ry = 0.823232 R; = 0.789942
3 Ry = 1.94817 Ry = 1.91887 Ry = 1.85534
Rj = 3.84076 Rj = 4.03772 Rj = 4.57236
B__= 120.69% B = 120.28% B_=118.36%
R; = 0.896298 Ry = 0.878576 R; = 0.840582
Ry = 1.75683 Ry = 1.72844 = 1.66706
4 Ry = 3.28899 Ry = 3.24334 Ry = 3.14417
Ry = 4.79759 Ry = 5.13014 Ry = 6.09308
B = 139.71% B_= 139.38% B = 138.66%
Ry = 0.975877 Rj = 0.955448 Ry = 0.911745
Ry = 1.70002 Ry = 1.67112 Ry = 1.60881
. Ry = 2.86558 Ry = 2.82228 Ry = 2.72846
Ry = 4.74914 Ry = 4.68707 Ry = 4.55211
Ry = 5.49659 Ry = 5.95104 Ry = 7.33340
B = 151.49% B = 151.23% B = 150.64%
Ry = 1.07070 Ry = 1.04720 R = 06.997001
Ry = 1.69661 = 1.66647 Ry = 1.60160
Ry = 2.68251 Rj = 2.63988 Ry = 2.54771
6 Ry = 4.09579 Ry = 4.03689 Ry = 3.90910
Ry = 6.28190 Ry = 6.20351 Ry = 6.03294
Rg = 6.02222 Rg = 6.58139 Rg = 8.34865
B = 159.46% B = 159.23% B_= 158.74%
Ry = 1.17776 R; = 1.15088 Ry = 1.00355
Rp = 1.72238 Ry = 1.69048 Ry = 1.62195
Ry = 2.59707 Ry = 2.55420 Ry = 2.46164
Ry = 3.77571 Ry = 3.71836 Ry = 3.594i6
7 Ry = 5.41532 Ry = 5.34048 Ry = 5.17798
Rg = 7.86210 Rg = 7.76747 Rg = 7.56150
Ry = 6.42051 Ry = 7.07770 Ry = 9.18968
B_= 165.19% B = 164.99% B =16457%
Ry = 1.29513 Ry = 1.26464 Ry = 1.19966
Ry = 1.76763 Ry = 1.73358 Ry = 1.66053
Rj = 2.56200 Ry = 2.51829 Rj = 2.42405
Ry = 3.59991 Ry = 354310 Ry = 3.42022
8 Ry = 4.95560 Rg = 4.88296 Ry = 4.72550
Rg = 6.80274 Rg = 6.71179 Rg = 6.51419
Ry = 9.47503 Ry = 9.36425 Ry = 9.12304
Ry = 6.75346 Rg = 7.47744 Rg = 9.89563
B = 169.50% B =169.33% B_= 168.96%

solution is to solve it in a minimﬁm RMS sense [14, p. 143]

a. = (RTR)"'R"t. (28)
This solution should now be subjected to the aforementioned
sign-test. If successful, it may then be used in (27) to obtain -

N criteria, or errors, representing the “deviation from linear
dependence” in Q. In particular
[Erti1 - Emin]T =t — Ra,
=(1-RRTR)RT)t. (29)

Step 4: The last step is to group both kinds of errors
together in £ = [£] -+ - Epr ] . If they are sufficiently small
(e.g., max{|&l,|E|, -+, [Emrn]} < 1076), the algorithm
terminates and the synthesis is done. If not, the next step is
to find an improved set of conductances (..., which will
result in smaller errors. This may be done by approximating
the functional dependence of £ on G as being linear; by ap-
proximating the partial derivatives by finite differences (using
conductance perturbations of 10~40) and by enforcing £ = 0.
This results in M + N linear equations in the N unknown
conductance improvements, which are also overdetermined
and inconsistent in general. Again using the minimum RMS
sense solution method, improved conductances may now be
solved for and the algorithm then repeats from Step 1.

The algorithm was applied to the Equiripple parent solution
of Table II, which had f. = 31.4519. The results of the
first four iterations are shown in Table III, and the final
solution showed a 0.528 dB reduction in the ripple level. Both
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TABLE VI
NORMALIZED RESISTANCE (R,) VALUES FOR Rgg = —20dB
CHERYSHEV REFLECTION BEHAVIORS (SEE TEXT)
[ N] er = 1 | cr = 1.03 [ e = 1.1 ]
Ry = 0.790001 Ry = 0.777107 Ry = 0.749242
2 R, = 2.31363 Ry = 2.37078 Ry = 2.51221
B =87.18% B = 8665% B = 8548%
Ry = 0.760552 By = 0.747693 Ry = 0.719913
Ry = 1.90474 Ry = 1.87516 Ry = 1.81124
3 Ry = 3.23075 R3 = 3.36944 Ry = 3.73492
B = 121.77% B =121 35% B = 120.41%
Ry = 0.767007 Ry = 0.753815 Ry = 0.725313
Ry = 1 68882 Ry = 1.66163 Ry = 1.60287
4 Ry = 3.23865 R3 = 3.18990 Ry = 3.08463
Ry = 3.77565 Ry = 3.97977 Ry = 4 53916
B = 140.83% B__= 140.50% B = 139.76%
Ry = 0 781686 Ry = 0.768171 Ry = 0.738956
Ry = 1.61910 Ry = 1.59221 Ry = 153415
R3 = 2.75740 Rj3 = 2.71489 Ry = 2 62296
5 Ry = 4.75326 Ry = 4.68207 Ry = 4.52863
Ry =4 10571 Ry = 4 35601 Ry = 5 05893
B =152 57% B = 152.30% B = 151.70%
By = 0.707876 Ry = 0.784103 R, = 0.754312
Ry = 1.59606 Ry = 1.56898 Ry = 1.51053
Ry = 2 57263 R3 = 2 53161 R3 = 2.44296
6 Ry = 3.94280 R4 = 3.88375 Ry = 3.75606
Ry = 6.44053 By = 6.34292 Ry = 6.13296
Rg = 4.31438 Rg = 4.59655 Rg = 5.40178
B = 160.46% B = 160.24% B =159 73%
Ry = 0 813430 Ry = 0 799464 R = 0.769238
Ry = 1.59356 Ry = 156612 Ry = 1.50689
Ry = 2.48273 Ry = 2 44214 Rz = 2.35445
Ry = 362175 Ry = 3.56575 Ry = 3.44465
7 Ry = 5.22681 Rs = 5.14991 Ry = 4.98371
Rg = 8 30589 Rg = 8.17724 Rg = 790105
Ry = 4 45160 Rp = 4.75604 Ry = 563413
B =166 12% B = 165.92% B = 165 49%
F; = 0.827640 Ry = 0.813537 Ry = 0.782994
Ry = 160137 Ry = 157351 Ry = 1.51338
Ra = 2.43715 Ry = 2.39653 Ry = 2 30882
R4 = 3.44990 Ry = 3.39514 Ry = 3 27678
8 Ry = 4.75290 Rg = 4.68106 Ry = 4.52569
Rg = 6 59900 Rg = 6.50282 Rg = 6 29508
Ry = 10.3609 Ry = 10 1959 Ry = 9.84235
Rg = 4.54487 Rg = 4.86507 Rg = 5.79556
B = 170.36% B_=170.19% B = 169.81%

responses are shown in Fig. 3, with the region of interest
enlarged in Fig. 4.

V. NUMERICAL RESULTS

Numerical results of a practical nature are shown in
Figs. 5-7 and Tables IV-VIL. Note that the abscissa now
extends to f = 200 to be consistent with the format
adopted by most of the literature on Jauman absorbers. Of
special interest are the —20 dB Chebyshev solutions. It has
been stated that the algorithm is designed to improve on
a given Equiripple solution, with the potential ripple level
improvement not known a priori. To generate the solutions
in Table VI, a small modification was therefore needed.
Specifically, after optimizing the —20 dB Equiripple solutions,
the cutoff frequency f. was decreased by small amounts (i.e.,
small bandwidth increases), and the algorithm was applied
repetitively until the ripple level returned back to —20 dB.

V1. CONCLUSION

The electric screen Jauman Absorber has a very structured
topology, and consequently it may be represented by a simple
equivalent circuit. The three synthesis algorithms introduced in
[2] and presented here in detail augment the surprisingly sparse
collection of absorber synthesis techniques that could be found
in the open literature. Although these algorithms are iterative in
nature, they are robust, tractable, and rigorous, and synthesize
two classical solutions (Butterworth and Equiripple responses)
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and also the optimal bandwidth response (named in honor of
Chebyshev). [lustrative results are given in lookup tables, and
although normal incidence and the absence of a radome are
implicitly assumed, these results may aid in practical Jauman
Absorber design.

APPENDIX
THE COMPUTATION OF d;,

First define intermediate derivatives

ap%y)

X],z,m = —(‘E

(30)
evaluated implicitly around G. Next, use (5) to construct the
recursive relation

X],z,m = Zc{Gz'—~1X a—1m—1 +p£:l__11)6(7/ *j - ]-)}

+ 2Xj7'i—1,m + X],z—?,m~—2 - X],z—z,m (31)

with §(0) = 1,8(¢ # 0) = 0, and where the ranges of j,1,
and m have to be carefully selected to accommodate all the
initial and edge conditions. Specifically, to construct the N
triangular sets of X’s, perform the following steps:

[For j = 1---N do
Initialize: X],z:0~~-N+1,m=—1--~N =0.
If j=1,set Xg:l,Z,l =Z,.
ori=max(3,j+1)---N+1do

Form=1.--i—1do (32)
Use (31) to compute X , .
Next m.
Next 4.
[ Next j.
Finally, use (7) to construct
da,
d,; = =Z X N1+ XN, — Xy Nt (33)
0G;

with 7,5 = 1.+ N.
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