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Electric Screen Jauman Absorber Design Algorithms
Leendert Johannes du Toit, Member, IEEE, and Johannes Hendrik Cloete, Member, IEEE

Abstract—The electric screen Jauman absorber [1] is a strati-
fied cascade of dielectric spacers, interlaced with resistive sheets,
which is effective in redncing specular reflection from flat or
moderately curved conducting surfaces. A literature survey of the
period up to 1993 may be found in [2], while the topic has also
received more recent attention, e.g., [3]-[9]. Usually, the dielectric
constant of the identical spacers is assumed known a pn”ori, and
the design problem is to find the sheet surface resistivities that
will yield an absorption behavior which meets certain design cri-
teria. This paper presents detail on three efficient and dedicated
synthesis algorithms that synthesize absorbers with Butterworth,
Equiripple, and Chebyshev absorption properties and should be
seen as complementary to the introductory discussion in [2].
To the authors’ knowledge, the Chebyshev solutions solve the
fundamental problem for the first time.

BORROWING
sign problem

I. INTRODUCTION

FROM the development in [2], the de-
may be related to the network shown in

Fig. 1, normalized to the intrinsic impedance of free-space
and to a center frequency of 1/4 Hz. The resistive sheets are
represented by lumped shunt conductance, O< G%<, coi =
1 . . . N, related to the sheets by Gi = VO/R,,, = l/R,,

with rlo = ~=, and Rs,, being the various unknown and
frequency-independent sheet surface resistivities in Q/square.

The identical dielectric spacers are represented by transmission

lines, each with a delay time of T = 1 s, and a charac-

teristic impedance 0< Zc <1, with Z. = l/~, and with
1 <e, <cc being the relative dielectric constant of the spacers
(which will be assumed known). The impedance normalization
suggests that the network be embedded in a 1-0 system, while
the commensurate transmission lines make it convenient to
utilize Richard’s complex frequency surrogate S = Z + jfl =
tanh(s) = tanh(a + jw) to express the input properties [10].
For numerical calculations, a real valued frequency surrogate
~ = 200w/7r will be defined that automatically normalizes
the absorber center frequency to ~ = 100. Bandwidth (B)
will be expressed in terms of these ~-domain units throughout

this paper and will therefore be in percentage units. Note that

~ should not be confused with the more conventional ~ =
w/(27r). Finally, only normal incidence will be considered,
and to retain as much as possible of the underlying order in
the pertinent analysis equations, the assumption will be made
that a radome, typically with a different thickness and Cr, is
absent.
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II. ANALYSIS EQUATIONS

It has been shown [2], [11] that the input impedance and
reflection coefficient of the network in Fig. 1 can be expressed

as

Zi*(S) = ‘CSPN
pN+~– PN ‘

and

~(s)= (Zcs + l)PN – PN+l

(.ZCS – l)PN + PN+~

(1)

(2)

with PN and PN+l the last two polynomials in the recursive
set

Pi+l = (ZcG@ + 2)Pi + (S2 – l)Pi_l (3)

with initial conditions P. = O,PI = 1, and with i = 1 . . . N.

These equations are sufficient to expand Z,. and p in terms of

Zc and GI N in general, although the number of terms and
symbolic complexity both grow dramatically with increasing
N. To circumvent this complexity during numerical synthesis,
while retaining S as an independent variable, the coefficients
of S in Pi may be derived recursively. Define

L—1

P1(S)=~p$JSm, for z=l... N+1 (4)
m=ll

where the superscript (i) does not denote any mathematical

operation, but is simply used as convenient notation. To be

mathematically complete, define p$) - 0 for m <0 and for
m z i, which automatically includes the one initial condition,

PO = O. The second condition, PI = 1, and the recursive
equation (3) for P,, may now be implemented by defining the

(Z=O...N+1)
‘1) – 1, and finallyinitial state as p~=_2, ,N = O, by setting p. —

by constructing a triangular set of coefficients by computing,
foreachi=2... N+l

where m= O.. .l–l. (5)

Note that this paper will present the reflection behavior (i.e.,

absorber performance) as the reflection coefficient magnitude
expressed in dB, A = 20 loglo Ipl, as a function of ~.

III. REALIZING REFLECTION ZEROS

A. Geizeral Algorithm

It follows from (l)–(3) and the definition of S that the
reflection zeros will be completely defined by the numerator

of p alone. In fact, it is partially proved and hence postulated

in [11] that such a given numerator is an overdetermined spec-

ification, with N! conductance solutions in general. Luckily,

0018–9480/96$05.00 @ 1996 IEEE



DU TOIT AND CLOETE ELECTRIC SCREEN JAUMAN ABSORBER DESIGN ALGORITHMS

z.
UNIT UNIT

ELEMENT
UNIT UNIT

[LEMENT ELEMENT ELEMENT

P+

Fig. 1. The Jauman network model.

the two specific absorption behaviors that will be synthesized
by controlling these zeros were found to be well-behaved and
exhibited none, or only one, unique physical solution. (The
uniqueness is a postulate.)

Let us now concentrate on realizing a given set of reflection
zeros. First denote the numerator of p by ~P and express it as

N,(s) = -1+ f aisi (6)
‘i=l

with the a, given by

(7)

(N) = 0, For conciseness,fori= l... N and remembering pN –
introduce the matrix notation a = [al . . . aN]T and G =

[Gl ~. . GN]T, where the superscript T indicates the transpose

and where we have a computable from G through use of
(5) and (7). This functional dependence of a on G may be
approximated by assuming the linear relationship

around the workpoint G. Notationwise we have a due to G; ii
due to ~; G assumed to be in the vicinity of ~; a, ti, G, ~
column vectors; and ~ the (fortunately) square Jacobian
matrix

(9)

with i,j = 1 . . . N, and with all quantities real. It was
found that finite difference approximations for the d,j were

not sufficiently accurate, or too slow, and that the more
computationally efficient method given in the appendix, was
needed. To complete the algorithm, rewrite the given Np(S),
which have to be realized as – 1 + Z:=l tit S’, enforce a =
ii= [iii,...,iijv] T in (8) and denote intermediate solutions

with superscripts to obtain the simple recursive improvement

scheme

G(i+l) = (’j?(i)+ (@))-l(~ - ~(i)) (lo)

Given the reflection zero requirements ii, an initial guess G(l),
and assuming stable convergence for the time being, (10) is
simply applied until convergence, i.e., when the maximum
difference between the elements of ii and a is sufficiently
small (e.g. S10–9).

/’7?77 /7)77 /’477

TABLE I
INTERMEDIATERESULTSWHEN SYNTHESIZING

THE N = 3, G. = 1, BUTTERWORTH SOLUTION

~ i ‘“:”3: 1

1 [1,00000, 0.50000, 0.33333] [0.0000, –1.5000, 0.0000]
2 [1.72581, 0.57258, 0.04301] [–0.0000, 0.4109, 0.1768]
3 [1.64346,0 519010 10618] [–0.0000 001280 0128]
4 [1.64404, 0.51427, 0.10914] [–0.0000, 0.0000, 0.0000]
5 [1.64404, 0.51426, 0.10915] [–0.0000, O.OOOO,0.0000]

B. Butterworth Syn{hesis

A Butterworth response may be obtained by realizing all
N reflection zeros at S ~ cm, thereby yielding a maximally
flat behavior around the center frequency where the reflection
coefficient magnitude and its first N – 1 derivatives with fre-
quency, vanish. It has been shown [11] that this is equivalent

to the specification Np = – 1, i.e., ii = O. Next, it is postulated
that for q. ~ cr,~,x (N), which is tabulated in [2], only one
realizable solution for G exists and that it can be found by

‘1) = l/i in (10).using Gi
As an illustration of the algorithm, consider the simple

Butterworth synthesis, N = 3 and q. = 1, of which the first
five iterations are given in Table I. Also, to complement the
discussion in [2], several practical solutions are given later, and
to illustrate the severe spread in sheet resistivities mentioned
in [2] it will be sufficient to state that we have, from the
N = 20, c. = 1 solution, that R1 % 0.5 and R20 >5 x 106,

with RI.. .20 monotonic.

C. Equiripple Synthesis

If the reflection zeros are realized on the imaginary S-

axis, at distinct and judiciously chosen (real) frequencies,
rippled behaviors may be obtained with the maxima all at
a specified level, ~dB expressed in dB. In Fig. 2 two :such
solutions for small N are depicted, and it is seen that in
general, M = floor(N/2) unique zeros might exist in the
range O< ~ <100, not counting the necessary zero at ~ = 100

for N odd. The notation floor(x) denotes the largest integer
~$, Next, we number these zero positions with decreasing ~,

call them Z1...A4, and denote the spacings in between the zi
the lobe-widths W1,..M. The following relationships exist:

N even: z%=

{

100–; i=l (11)
z~_~ —w% ~=2.. . Lf, and

Nodd: Zi =
{

100 – WI ~=1

z~_l — w~ ~=2. ..M. (12)
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Fig.2. ~picdreflection behavior of~uifipple solutions. Thedotted~ace
is for N = 4 and the solid trace for N = 5.

Next, associate a reflection maximum expressed in dB with
each lobe, and denote them ml...M. As before, introduce
the matrices w = [W1, ....WM]T. Z = [ZI,.”’,ZM]T, and

~=[TTLl, ..”,mM ]T. The algorithm now entails the repetitive

execution of the following steps:

Step 1: Initially, and only during the first iteration, define
the (almost) equispaced lobe-widths

150

‘l= N+0.5
for M = 1, and

200 150

‘l”””M-l = N + 0.5’ ‘M = N + 0.5
for M>l. (13)

Step 2: This will be the entry point during iteration. From
the current lobe-widths w, find the zero positions with (11) or
(12) and then construct

1‘P(s) = -j { ~.n2(~~/200) + 1 “ (14)

Note that ~P will of necessity always be an even polynomial

in S, i.e., that az~_l = O for 2 = 1.. .floor((N + 1)/2), and

that it will be of degree 2M.
Step 3: To realize the constructed NP, simply apply the

iterative algorithm given by (10), taking the current solution
for G, computed in Step 3 of the previous iteration, as G(l).

Should this be the first iteration, i.e., the realization of the zeros
(1) = 1/2,~ =given by the initial lobe-widths (13), use Gi

1 ..*N.

Step 4: With G known, m should now be computed. As
will be made clear later on, the computation of m will
also be needed in an inner loop, where partial derivatives
will be approximated by finite differences. This necessitates
the accurate computation of m, which was implemented by

evaluating Ip I at the zeros of its derivative with frequency.
This derivative may be constructed in closed form, and its

zeros may be found using a simple iterative procedure that

starts at the midpoint of each lobe.
With m known, a test for convergence should take place

that may be defined simply as when the maximum difference
between any element of m and ~cU3 is sufficiently small (e.g.,
<10–4). Should this be the case, the synthesis is done and the
frequency bandwidth may subsequently be computed. If not,
the iteration proceeds to Step 5.

Step 5: This is the heart of the algorithm, where an un-
satisfactory ripple behavior will be improved by judiciously

perturbing the lobe-widths. This operation leans heavily on

the fact that a reflection maximum in between two zeros (ex-
pressed in dB) is more or less proportional to its corresponding
lobe-width (expressed in f-domain units). With this in mind,
each maximum is now approximated by a linear combination
of all the lobe-widths, i.e.,

Tn%Fiz+E( w-m). (15)

Notationwise, we have m due to w; hi due to ~ (the current
maxima and lobe-widths); the new lobe-widths in w assumed

to be in the vicinity of ~ m, fi, w, and ~ column vectors; and
~ the (again, fortunately) square Jacobian matrix

(16)

with i,j = 1.. . M. The partial derivatives in ~ may be

approximated by finite differences, in particular by perturbing
the lobe widths one by one, each time retracing the complete
cycle from Step 2 up to the recomputation of m and by

observing the resulting changes in m. Note that these perturbed
intermediate quantities should only be used to buildup ~, and

that they should be discarded afterwards. It was found that
width perturbations of 0.001 f-domain units are sufficiently
small for all reasonable ~dB, and N up to at least 20. Note
also from (11) and (12) that a width-perturbation in lobe j
will cause shifts in all the remaining zero positions, namely
~i, a= j.. . Al, with small corresponding shifts in the positions

of the corresponding maxima.

Solving (15) for w by enforcing ml...&f = %?dB results in
the following width-improvement matrix equation:

w =w+ ~(Aw), with (17)

fiw = (~)-1 (~dB –=) (18)

which is not recursive. The meaning of 7?dB – Ei is that
each element of the vector m should be subtracted from the
scalar ~dB, thereby again resulting in a vector. It is also
important to note the damping constant O</3 g 1, which was
implemented to subdue instabilities in the first few iterations
of certain synthesis runs. Specifically, these occurred due to
the rough assumption of linearity in (15), which induced lmge
(and sometimes unrealizable) lobe-width improvements. These
in turn translated to big changes in the coefficients of NP (S),
which could not be realized with (10).

This unstable behavior was controlled by restricting the
maximum lobe-width change to be 25/ (N + 2)-domain units.
Particularly, ~ is derived from the proposed lobe-width im-

provements Aw given by (18), as

( 25

)p = ‘in 1’ (N+2)max{[Awll,.,l Aw~l} ‘
(19)

Note that final convergence is unaffected, as we then have

~ = 1. With (17) and (19) an improved set of lobe-widths
may now be computed. These new widths should then be used
in the next iteration, by injecting them into Step 2.
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Fig. 3. Reflection behavior for the N = 3, ~, = 1, 7?dB = – 15 dB
Equiripple parent solution (dotted), and the Chebyshev solution optimized
over the same (fc = 31.4519) parent bandwidth (solid).

The first few iterations in the N = 3, Er = 1 and ~dB =
– 15 dB Equiripple synthesis are shown in Table II and clearly
illustrate the algorithm. As another example, the N = 20,6. =
1 and ~dB = –20 dB soh.Jtion has 3< RI, ,.20<30, which
is seen to be much less of a spread than the corresponding
Butterworth solution (see the comments in [2]). As in the
Butterworth case, it is postulated that for c, S er,~ax (N, %?’rIb),
which is tabulated in [2], only one realizable solution for G

exists, and that it can be found by using the algorithm as
presented here. Lastly, a few solutions of practical interest are
tabulated later.

IV. OPTIMAL CHEBYSHEV SYNTHESIS

Experience gained during the development of the Equiripple
synthesis algorithm indicated that such solutions are very close
to local optimality. Numerical investigations, however, found
small improvements in either the ripple level or the frequency
bandwidth, and sometimes both. These potential improvements

are negligible for practical purposes, but the nonoptimality of
the Equiripple solutions was quite unexpected and felt to be
important from a scientifically fundamental point of view.

The synthesis algorithm that was developed to find these
optimal solutions will invoke Chebyshev’s fundamental theo-
rem and will thus be named in honor of him. The procedure
is to assume a successful Equiripple synthesis, and then to
reduce the reflection maxima (over the parent Equiripple

solution’s bandwidth) as much as possible. The algorithm
will operate directly on the conductance, and its objectives

will be the simultaneous reduction and ultimate vanishing
of iM = floor(N/2) errors representing the differences be-
tween the maxima, and N errors indicative of the deviation
from an optimal situation. Together, vanishing of these er-
rors corresponds to a locally optimal situation, which will
be heuristically conjectured to be global. All the pertinent
numerical techniques that will be used have already been
introduced, and the algorithm will thus be presented in a

concise format.
As may be expected, the general structure of the rippled

reflection coefficient magnitude does not change much when
an Equiripple solution is optimized. This is shown in Fig. 3.
Therefore, the same numbering scheme described earlier will
be employed for the maxima, i.e., ml.. .M. As before, only
the respective values in dB will be of interest, and not

TABLE II
INTERMEDIATE RESULTS WHEN SYNTHESIZING THE

N = 3,q- = 1,%& = – 15 dB EQUIRIPPLE SOLUTION

Equation

(13)

(12)

(14)

(lo), i= 1

(lo), i = 2

(lo), i =3

(:) ;e;t4

See Step 4

(16)

(18)

(19)

(17)

(12)

(14)

(lo), i = 1

(lo), i=2

(lo), i=3

See text

See Step 4

(16)

J

(18)

(19)

(17)

3

(12)

14)

(lo), i = 1

(lo), i= 2

(:! ;e;t3

See Step 4

(16)

(18)

(19)

(17)

Resutts

Initialize : WI = 42 ~

z, = 57L[
tip = –0.6360S2 -~, i.e. 5 = [O, –().636i),0]Y”

GI = 1,0000, G2 = 0.50000. G.I = 0.33333

&
GI = 1.4181, G; = 0.54181; G; = 0.16610
G1 = 1.3896, G2 = 0.51837, G3 = 0.19121
G] = 1.3897 G2 = O 51759 G3 = 0.19170

el,l = 0.792
Awl = 14.68 I

p = 0.341

We have til = 42$, therefore WI = 47%.

ZI = 52+

AfP = –0.8739S2 -1, i.e. & = [0, -’0.8739,0]1’

G1 == 1.3897, G2 = 0.51759, GA = 0.19170
G1 = 1.2898; G; = 0.51733; G; = 0.22528
GI == 1.2878, G2 ==0.51626, Gs = 0.22650 I

Convergence reac’hed.

ml = –22.719 dB
e~,~ = 0.775
Awl = 9.963

@== 0.502

We have @l = 47?, therefore WI = 52 ~.

z] = 47+

N – –1.1969S2 – 1, i.e. 6 = [0, -1.1969,0~’
&= 1.2878, G2 = 0.51626, G3 = 0,22650
GI = 1.1468, G2 = 0.51335, G3 = 0.27556
GI = 1.1430, G> = 0.51099, G, = 0.27840 I

COnv&gence rea~ed.

ml = –18.819 dB
el,l = 0.792

Awl = 4.820
p=l

we have@ = 52:, therefore WI = 57.677.

Iteration 4: ml = -14.851 dB.

Iteration 5: ml = -14.999 dB.

Iteration 6 ~ Final solution :
GI = 0.94645, G2 = 0.49410, G3 = 0.35512, B == 137.096%.

the frequency points where they occur. To complete the
formulation, one additional maximum is of interest, namely

mM+l = 20 log lo IPI, evaluated at the frequency point which
defines the bandwidth of the parent Equiripple solution, fc.
Except for the fact that Ipl will always be evaluated at
~., m~+l will be treated in exactly the same way as the other
maxima.

Step 1: Assuming known conductance, the M+ 1 maxima
may be computed as before (see Step 4 of the Equiripple
algorithm). With these maxima known, M errors of the first
kind will now be defined as

[&l,..., t~]~ = mM+l – [ml,... , m&f]T (20)

with each element of the vector being subtracted from the
scalar mM+ 1. Since the optimization initiates with an Equirip-
ple solution, it follows that these errors will start out being
zero. During optimization the maxima will differ slightly,
however, and they will only equalize again upon convergence.

Step 2: The next step is to define errors of the second kind,
which will be indicative of the nonoptimality of the current
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TABLE III
INTERMEDIATERESULTSWHENOPTIMIZINGTHE

N= 3,+ = l,??d~ = –15dBEQOIRIPPLE PARENT
SOLUTIONTOWARDSTHEOmIMALCHEBYSHEV SOLUTION

Equation Results

(20) I t,=o I.,
(22) Q = [ ;gg&56 -6.7886 15.2929

-1.8947 –18.2545 1
(29) &2 = –5.4158, &3 = –7.07’77, E4 = –6.5785

.-
See Step 4 G = 1.12254 0.508687 0.433493 ‘

(20) &l = –0.2985

L(22)

(29)

See Step 4

r

(20)

(22)

(29)

=

&Z– –0.7815, i?3 – –0.0212, &4 = -0.3446

~&.2= -0.0224, Es = -0.0780, Ed = -0.0403.,
See Step 4 G = 1.19576 0.490890 0.443508 T

(20) E, = 0.00002.,
(22) Q = [ ;:5& –7.2087 17.6660

3.9437 –9.6656 1
(29) .52 = -0.0002, E3 = –0.0004, &4 = -0.0002

.m
‘See Step 4 G = 1.19577 0.490892 0.443512 j ‘

A

dB

Normalized frequency, f

Fig. 4. Reflection behavior for the N = 3,6. = 1, ~dB = –15 dB
Equinpple parent solution (dotted) and the Chebyshev solution optimized
over the same ($C = 31.4519) parent bandwidth (solid). Note the exploded
ordinate state.

solution. Optimality in the present context simply implies that

the M + 1 maxima under investigation must be at a state

where they cannot all reduce simultaneously, To formalize this

criterion, set up the following matrix equation:

QA = [Al, Az,..., A~+l]T, with (21)

Q = [qij],
am~

where qij = ————
8Gj ‘ ‘d

‘i=l . .. M+l. j=l... IV (22)

with the Ai arbitrary nonzero real numbers with the same

sign, with J = [Al . . , AN]T to be solved for, and with
the qij approximated by finite differences. Because the q~j

will be nested in an outer loop (see Step 4), which will

also approximate differentiation with respect to conductance

by finite differences, these perturbations have to be chosen

carefully, and it was found that conductance perturbations of
10–5U were sufficiently small.

A

dB

o

-20-

-40“
o 50 100 150 200

Normalized frequency, f

Fig. 5. Generic reflection behavior for the tabulated Butterworth solutions.
Note the monotonic decrease from ~ = O to ~ = 100.

A

dB

Normalized frequency, f

Fig. 6. Generic reflection behavior of the tabulated – 20-dB Equiripple
solutions. Note the N reflection zeros in the range O < .f <200.

Optimality will have been reached when (21) has no so-
lution [12], which explains the no-solution terminology often
associated with this approach, and which is an expression of

Chebyshev’s fundamental theorem. It follows that (21) will
have no possible solution for J when the M + 1 rows of Q
exhibit linear dependence, i.e., when al., .M+l, not all zero,

exist such that
M+l

x ~iqij=O) for ‘j=l...~ (23)

i=l

with the signs of all the nonzero cw the same and with all ~i
real. It should be noted that the requirement on the signs of CIi
was pointed out by Navot [13]. Although this sign requirement

can not be enforced in the algorithm, it can be checked for and

indeed was satisfied by all the examples worked out during the
course of [11] and [2] and during the preparation of this paper.

Step 3: Now, since (23) will by necessity not be possible
during optimization, iV optimality errors may now be extracted
from it. Stated loosely, these errors will be indicative of the
“deviation from linear dependence in the rows of Q.” Without
loss of generality, define ~A4+l = – 1, keep in mind that all
quantities are real, and restate (23) as follows:

M

~ ~iqij = qkf+l,j for .i = 1-N (24)

i=l

Before proceeding, it will be convenient to segregate Q into

R = [rij] with r~j = qji, and

~=1.. N, j=l... M (25)
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Fig. 7. Generic reflection bebavior of the tabulated –20 dB Chebyshev
solutions. Note the iv reflection minima in the range 0< t <200.

TABLE IV
NORMALIZEDRESISTANCE(R; ) VALUESFORBUTTERWORTH

REFLECTION BEHAVIORS, WITH THE CORRESPONDING
4 an .- r —–.—–

BANDWIDTHS LOMPIJTED AT THE /t = – ZU OM LEVEL

-r=
1

—

2

—

3

—

4

—

5

—

6

.

7

—

8

—

.
B = 67.32%
RI = 0.608257
1?+= 1,94454
R3 = 9.16207

B = 92.64%
RI = 0.561038
R2 = 1.49364
RS = 4.27818
R. = 22.5545.
B = 108.92%
RI = 0.535357
R2 = 1.28591
RZ = 2.91767
R4 = s.79951
R5 = 53.1999

B = 120.31%
RI = 0.520602
R, = 1.17288
R; = 2.32379
R4 = 5.327a6
RR = 17.6607
& = 122.301

B = 128.78%
RI = 0.511953
R; = 1.10625
RS = 2.00829
R4 = 3.90673
R5 = 9.52448
* = 35.1300
R, = 276.238
B’ = 135.36%
RI = 0.506871
Rs = 1.06546
R; = 1.82256
R4 = 3.18060
R~ = 6.41672
~ = 16.9650
R, = 69.6897
R; = 615.734

B = 140.68%

.
B = 66.797,
RI = 0.599334
R, = 1.91601
R; = 10.4295

B = 92.137.
R, = 0.552807
g = 1.47173
R3 = 4.21541
RA = 33.2137.
B = 106.45%
RI = 0.527503
R2 = 1.26705
Ra = 2.87487
R~ = 8.67041
R. = 238.792.
B = 119.68%

No
SOLUTION

Fro
SOLUTION

No
SOLUTION

Cr = 1.1

RI = 1.00000

B = 24.11%
RI = 0.674200
R, = 3.87027

B = 65.65%
RI = 0.579950
R2 = 1.85404
R3 = 15.2290

B = 91.01%

NO
SOLUTION

NO
SOLUTION

NO
SOLUTION

NO
SOLUTION

NO
SOLUTION

and into

T
t = [!L14+1,1, ~M+l,2> “ “ “ >4W+1,NI . (26)

This segregation, together with a = [oq . . . CIM-]T,transforms

(24) into

R.cx=t. (27)

It readily follows that (27) represents N linear equations in

A4 unknowns, with N > M, that it will be overdetermined

and also inconsistent in general. One way to find the “best”

N-
=

2

—

3

—

4

—

5

—

6

—

7

—

8

—

TABLE V
NORMALIZED RESISTANCE (Ri) VALUES FOR

%?dB = – Z()dB EQUIRIPPLEREFLECTION BEHAVIORS

C?=l

RI = 0.826694
R2 = 2.52955

B = 88.40%
R, = 0.836716

.
B = 120.69%
RI = 0.896296
Ra = 1.75663
R; = 3.26899
R~ = 4.79759

B = 139.71%
Rt = 0.975877
R, = 1.70002
R; = 2.66558
R. = 4.74914
R; = 5.49859

B = 151.49%
RI = 1.07070
R, = 1.69661
R; = 2.68251
R4 = 4.09579
R. = 6.28190
~ = 6,02222

B = 159.46%
R, = 1.17776
~ = 1.72236
R3 = 2.59707
R4 = 3.77571
R5 = 5,41532
~ = 7.86210
RT = 6.42951

B = 165.197,
R, = 1.29513
R; = 1.76763
R3 = 2.56200
R4 = 3.59991
R5 = 4.95560
R6 = 6,80274
R, = 9.47503
R; = 6.75346

B = 169.50%

R; = 1.91887
R, = 4.03772.
B = 120.28%
RI = 0,878576
Ro = 1.72844
R: = 3.24334
R. = 5.13014

~ = 1.85534
Rx = 4.57236.
ts = 119.36%
RI = 0.840582
R.2= 1.66706
R3 = 3.14417
R. = 6.09308. .

B = 139,36% B = 138,66%
RI = 0.955448 RI = 0.911745
R? = 1.67112 RO = 1.60861

-&%-H%&
R; = 2.63988 I R; = 2,54771
R4 = 4.03689 R4 = 3.90910
R< = 6,20351 R< = 6.03294
& = 6,58139

B = 159,23%
R, = 1.15068
R; = 1.69048
R3 = 2,55420
R4 = 3.71836
R5 = 5,34046
R8 = 7,76747
R. = 7.07770

~ = 6.34865

L4 = 158.74%
RI = 1.09355
R; = 1,62195
R3 = 2.46164
R4 = 3.59416
R5 = 5.17798
~ = 7.56150
R. = 9.18968

R; = 3.54310 R; = 3.42022
RS = 4.88296 R5 = 4.72550
~ e 6.71179 ~ = 6,51419
R, = 9.36425 R, = 9.12304
R; = 7.47744 Ra = 9,89563

B = 169.33% B = 168.96%

solution is to solve it in a minimum RMS sense [14, p. 143]

Q!* = (RTR)–lRTt. (28)

This solution should now be subjected to the aforementioned
sign-test. If successful, it may then be used in (27) to obtain
N criteria, or errors, representing the “deviation from linear

dependence” in Q. In particular

[EM+, . . . 8M~N]T =t – .R4Z.

=(1 - R(RTR)-lRT)t. (29)

Ste@4: The last step is to group both kinds of errors
together in & = [~1 . . . $M+N]T. If they are sufficiently small
(e.g., max{l~~l, l&zl, . . . . ISM+NI} < 10-6), the algorithm
terminates and the synthesis is done. If not, the next step is

to find au improved set of conductance GI..,N, which will
result in smaller errors. This may be done by approximating

the functional dependence of& on G as being linear; by ap-
proximating the partial derivatives by finite differences (using
conductance perturbations of 10–4U) and by enforcing E = O.
This results in M + N linear equations in the N unknown
conductance improvements, which are also overdetermined
and inconsistent in general. Again using the minimum RMS
sense solution method, improved conductance may now be
solved for and the algorithm then repeats from Step 1.

The algorithm was applied to the Equiripple parent solution
of Table II, which had ~c = 31.4519. The results of the
first four iterations are shown in Table III, and the final
solution showed a 0.528 dB reduction in the ripple level. Both
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TABLE VI
NORMALIZEDRESISTANCE(R,) VALUES FOR ??AR = – 20 dB

CHEBYSHEV REFLECTION BEHAVIORS (SE;-TEXT)

Er=l

RI = 0.790001
R2 = 2.31363

B = 87.18%
R, = 0.760552
% = 1.90474
R3 = 3,23075

B = 121.77%
RI = 0.767007
R2 = 168882
RS = 3.23865
R4 = 3.77565

B = 140.83%
RI = O 7s1686
R2 = 1.61910
R3 = 2.75740
R4 = 4.75326
Rz = 410571.
B = 15257%
R, = 0.797876
Rz = 1.59606
R? = 257263
R; = 3.94260
RS = 6.44053
R6 = 4.31436

B = 160,46%
R, = O 813430
R; = 1.59356
R3 = 2.48273
R4 = 362175
R5 = 5.22681
& = 830589
R; = 445160

B = 166 12%
RI = 0,827640
R2 = 160137
R3 = 2.43715
R4 = 3.44990
R5 = 4.75290
R6 = 659900
R7 = 10,3609
RR = 4.54487

t3-= 170.36%

CT = 1,03

RI = 0.777107
R2 = 2.37078

B = 86 65%
RI = 0.747693
R, = 1.87516
R; = 3.36944

B = 12135%
RI = 0,753815
R; = 1.66163
R. = 3.18990
R; = 3.97977

L? = 140.50%
R, = 0.768171
R; = 1.59221
R3 = 2.71489
R4 = 4.66207
R5 = 435601

B = 152.30%
RI = 0,784103
R2 = 1.56898
R3 = 253161
R4 = 3.88375
R. = 6.34292
$ = 4.59655

r3 = 160,24%
RI = O 799464
R; = 156612
R3 = 244214
R4 = 3.56575
R5 = 5.14991
% = 6.17724
R; = 4.75604

B = 165.92%
R, = 0,813537
R; = 157351
R3 = 2.39653
R4 = 3.39514
R5 = 4.68106
~ = 6.50282
R, = 101959
R; = 4.86507

r3 = 170.19%

Ct-=1.l

RI = 0,749242
R2 = 2.51221

ill= 85 48%
RI = 0.719913
R2 = 1,81124
R3 = 3,73492

t3 = 120.41%
R, = 0.725313
R; = 1.60287
R, = 3.08463
R; = 453916

B = 139.76%
R, = 0.738956
& = 153415
R3 = 262296
R4 = 4.52663
R5 = 505893

t3 = 151.7070
RI = 0.754312
R2 = 1.51053
R3 = 2.44296
R4 = 3.75606
RK = 6.13296
~ = 5.40178

B = 1597370
RI = 0.769238
R. = 1.50689
R; = 2.35445
R4 = 3.44465
R5 = 4.98371
R6 = 790105
R; = 563413

t3 = 165 49?4
R, = 0.782994
R; = 1.51338
R3 = 230882
R4 = 327678
R5 = 4.52569
~ = 629508
R, = 9.84235
R8 = 5.79556

S3 = 169.81%

responses are shown in Fig. 3, with the region of interest
enlarged in Fig. 4.

V. NUMERICAL RESULTS

Numerical results of a practical nature are shown in
Figs. 5–7 and Tables IV–VI. Note that the abscissa now
extends to ~ = 200 to be consistent with the format
adopted by most of the literature on Jauman absorbers. Of
special interest are the – 20 dB Chebyshev solutions. It has
been stated that the algorithm is designed to improve on
a given Equiripple solution, with the potential ripple level

improvement not known a priori. To generate the solutions
in Table VI, a small modification was therefore needed.

Specifically, after optimizing the –20 dB Equiripple solutions,
the cutoff frequency ~. was decreased by small amounts (i.e.,
small bandwidth increases), and the algorithm was applied
repetitively until the ripple level returned back to – 20 dB.

VI. CONCLUSION

The electric screen Jauman Absorber has a very structured
topology, and consequently it may be represented by a simple
equivalent circuit. The three synthesis algorithms introduced in
[2] and presented here in detail augment the surprisingly sparse
collection of absorber synthesis techniques that could be found
in the open literature. Although these algorithms are iterative in
nature, they are robust, tractable, and rigorous, and synthesize
two classical solutions (Butterworth and Equiripple responses)

and also the optimal bandwidth response (named in honor of

Chebyshev). Illustrative results are given in lookup tables, and
although normal incidence and the absence of a radome are
implicitly assumed, these results may aid in practical Jauman

Absorber design.

APPENDIX
THE COMPUTATIONOF di~

First define intermediate derivatives

apj$
x—

““m = i3GJ

evaluated implicitly around ~. Next, use
recursive relation

(30)

(5) to construct the

x j,z, m = Zc{Gi-lX,,z-I,m-I +P::;)($(i–j – 1)}
+ 2xj)i–l,m + xJ,t–2,m_2 – xJ,,–2,m (31)

with 6(0) = 1, 6(i # O) = O, and where the ranges of j, i,
and m have to be carefully selected to accommodate all the
initial and edge conditions. Specifically, to construct the N
triangular sets of X’s, perform the following steps:

Forj=l.. .Ndo
Initialize: X3, Z=0..,N+1,~=_l,,.N = O.
If j = l,set Xj=1,2,1 = Z,.

[[

ori=max(3, j+l). .. N+ldo
Form =l. ..l dodo (32)

Use (31) to compute Xj,,,~.
Next m.

Next i.
Next j.

Finally, use (7) to construct

d%j = ;:,— = ZCXJ,N,,–l + Xj,N,, – X3, N+I,i (33)
J

withi, j = 1.. *N.
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